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We develop a thermodynamic theory for a difficult class of chemical processes undergoing in irreversible
power-producing systems that yield mechanical work and are characterized by multiple (vectorial) effi-
ciencies. Obtained efficiency formulas are applied for chemical machines working at maximum produc-
tion of power. Steady-state model describes a chemical system in which two reservoirs are infinite,
whereas an unsteady model treats a dynamical system with finite upper reservoir and gradually decreas-
ing chemical potential of a key fuel component. In the considered chemical systems total power output is
maximized at constraints which take into account dynamics of mass transport and efficiency of power
generation. Dynamic optimization methods, in particular variational calculus, lead to optimal functions
that describe integral power limits and extend reversible chemical work Wrev to finite rate situations.
Optimization results quantify effects of chemical rates and transport phenomena. Legendre transform
of a local power function is an effective tool to obtain an optimal path in a dynamical process of power
yield.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In this work, we analyze the performance of a non-isothermal
chemical engine in terms of heat and mass fluxes flowing from a
fuel reservoir to the power generator. By assumption, a fuel mix-
ture that drives the power generator is composed of an inert and
an active component. Efficiency, power yield, and fuel flux are
essential variables determining the performance of the chemical
system [1–3]. The problem of finite-rate limits, which was treated
in our earlier papers for thermal processes [4–6], is applied here to
chemical systems, steady and unsteady. Enhanced limits caused by
finite rates are evaluated for power released from an engine system
or added to a power consuming system.

We discuss two basic models of chemical units producing
power. Steady-state model, originated in [1,2], refers to the situa-
tion when both reservoirs are infinite, whereas a new, unsteady
model treats a dynamical case with finite upper reservoir and grad-
ually decreasing chemical potential of the active component of
fuel. As opposed to the earlier works [1,2], we extend the original
problem to situations with non-isothermal generation of power.
In the dynamical case Lagrangian and Hamiltonian approaches to
power functionals and optimization algorithms using canonical
equations are effective. Finite-rate models incorporate a minimum
entropy production caused by irreversible diffusion phenomena.

Modeling a power-assisted chemical operation for the purpose
of dynamic limits is a difficult task. Evaluation of dynamic limits
requires sequential operations [3–6], where total power yield is
ll rights reserved.
maximized at constraints which describe dynamics of energy and
mass exchange. The dynamical model can be continuous or dis-
crete; the latter are frequent for computational purposes. The re-
sults are limiting work functions in terms of end states, duration
and (in discrete processes) number of stages [5]. Modeling of
power generation processes is consistent with general philosophy
of optimization [7–9]. Constraints take into account dynamics of
mass transport and rates of fuel consumption. Finite-rate, endore-
versible modeling includes irreducible losses of classical exergy
caused by resistances. Optimal performance functions, which de-
scribe extremum power and incorporate a residual minimum en-
tropy production, are determined in terms of end states, duration
and (in discrete processes) number of stages [5,10]. Similarly as
in thermal systems enhanced power limits follow from the con-
strained optimization of total power.

In chemical engines mass transport processes participate in the
transformation of differences of chemical potentials into mechan-
ical power. However, a more precise statement refers not to the
individual chemical potentials lk, but to their linear combination
in the form of uni-directional component of chemical affinity, Pj

[11]. This affinity component is, in fact the potential Pj of the re-
agents that decreases along the reaction path. The quantity Pj

(which reduces to the chemical potential of a single component
only in the case of a simplest isomerisation reaction) plays in
chemical engines role analogous to that played by the temperature
in heat engines. Yet, in chemical systems, generalized reservoirs
are present that are capable of providing heat and substance. Heat
conductors of the thermal engine theory became conductors of
both matter and substance in the chemical engine theory.
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Nomenclature

A, Aclass molar generalized and classical exergy (J mol�1)
A chemical affinity of reaction (J mol�1)
AC = �DG chemical affinity at Carnot point (J mol�1)
Ak total exchange area at stage k (m2)
av specific area per unit volume (m�1)
cp molar heat capacity at the constant pressure

(J mol�1K�1)
cm mass capacity of the active component of fuel (mol2 J�1)
F area of surface perpendicular the flux direction (m2)
f0, fi process rates
G Gibbs energy flux driving chemical engine (J s�1)
g1, g partial and overall conductance (mol s�1)
H Hamiltonian
hr Hamiltonian density in entropy units (J m�3 K�1)
HTU height of mass transfer unit (m)
I molar flux of inert component (mol s�1)
k stage number
l transfer area coordinate, variable of spatial extent of the

system (m)
Nk cumulative flux of mole number for stages 1,2, . . .,k

(mol s�1)
n diffusive flux of mole numbers, invariant flux of active

components of the fuel mixture (mol s�1)
P, p cumulative power output and power output (J s�1)
Q heat flux including effect of mass transfer (J s�1)
q sensible heat flux (J s�1)
R gas constant (J K�1 mol�1)
R(X, t) optimal work function of cost type in terms of state and

time (J mol�1)
r chemical reaction rate (mol m�3 s�1)
S entropy (J K�1)
Sr molar entropy production (J K�1 mol�1)
T temperature of controlled phase (K)
T1, T2 bulk temperatures of reservoirs 1 and 2 (K)
T10 ; T20 temperatures of fluid circulating in thermal engine (K)
Te constant equilibrium temperature of environment (K)
T0 Carnot temperature (K)
_T ¼ u rate of temperature change in non-dimensional time (K)
t physical time, contact time (s)
u control vector
u variable controlling the fuel consumption
V = max(W) optimal work function of profit type (J mol�1)
v velocity (m s�1)
W = P/G total specific work or total power per unit molar flux
W molar work at flow, total power per unit mass flux of in-

ert (J mol�1)
X concentration of active component in fuel, moles per

mole of inert (mol mol�1)

_X ¼ dX=ds1 rate change of fuel concentration in time s1

x molar fraction of active component in the fuel
(mol mol�1)

x10 molar fraction of reactant in chemically active part of
the system (mol mol�1)

x20 molar fraction of product in chemically active part of
the system (mol mol�1)

z adjoint variable

Greek symbols
a0 overall heat transfer coefficient (J m�2 s�1 K�1)
b0 overall mass transfer coefficient (mol m�2 s�1)
c cumulative conductance of the system (J s�1 K�1)
e pseudoenergy as the Legendre transform of a Lagrang-

ian
f ¼ l10 � l20 efficiency of chemical engine as active part of chem-

ical affinity (J mol�1)
fmp efficiency of chemical engine at maximum power point

(J mol�1)
g = p/q1 first-law thermal efficiency
h time interval referred to non-dimensional time s1, Eq.

(77), and conductance g1

k Lagrange multiplier (J mol�1)
l chemical potential (J mol�1)
l0 Carnot chemical potential for active component of fuel

(J mol�1)
l1 chemical potential of active component of fuel (J mol�1)
n process intensity factor
Pj one-directional part of chemical affinity for jth reaction

(J mol�1)
rs intensity of entropy production (J K�1 m�3 s�1)
s non-dimensional time, number of transfer units (x/HTU)
U factor of internal irreversibility
v state vector

Subscripts
C Carnot state (open circuit)
i state variable index
j reaction number
v per unit volume
1, 2 components 1 and 2

Superscripts
e environment
i initial state
f final state
0 Carnot quantity
0 reference state
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Infinite reservoirs are capable of keeping constant the process
potentials (T,lk,Pj, . . .). For such reservoirs problems of extremum
power (maximum of power produced and minimum of power con-
sumed) are static optimization problems. On the other hand, for fi-
nite reservoirs, in which the amount of an active reactant is
gradually reduced and its chemical potential decreases in time,
the considered problems are those of dynamic optimization.

To deal with steady situations, we consider a single ‘endore-
versible’ chemical machine, an engine or power consumer, in
Fig. 1. The engine is propelled by a high-l active reactant of a fluid
mixture (fuel mixture) that is supplied to the power generator
from an infinitely large reservoir. The fluid mixture is composed
of the active reactant and an inert. The flux of active reactants des-
ignated by n, influences the intensity of power yield, where n = n10

for the substrate and n = n20 for the product.
Yet, tackling a dynamical situation requires considering a mul-
tistage production (consumption) of power in a sequence of chem-
ical engines. This case is associated with a finite upper reservoir
and a gradual exhaust of the active reactant in the fuel mixture.
In the multistage engine the chemically active reactant drives at
each stage the chemical power generator from which power is re-
leased. In the multistage power consumer the fuel mixture is up-
graded in the system to which power is supplied. In each case
the second fluid is an infinite reservoir. The fluids are of finite ther-
mal and mass conductivity, hence there are finite resistances in the
system. In a multistage engine operation the driving chemical po-
tential decreases at each stage; the whole operation is described by
the sequence l0,l1, . . .,lN. The popular ‘engine convention’ is used:
work generated in an engine, W, is positive, and work generated in
a power consumer is negative; this implies a positive work (�W)



Fig. 1. Principle of a chemical engine driven by transfer of an active component
through an inert.
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consumed in the power consumer. The sign of an optimal work
function VN = maxWN defines working mode for an optimal
sequential process as a whole. In engine modes W > 0 and V > 0.
In power consumption modes, W < 0 and V < 0, therefore working
with a function RN = �VN = min(�WN) is more convenient. Of spe-
cial attention are two processes: the one which starts with the
state X0 = Xe and terminates at an arbitrary XN = X and the one
which starts at an arbitrary X0 = X and terminates at Xe. For these
processes functions VN and RN are counterparts of the classical
exergy in state changes with finite durations.

The topological nature of the state space and its influence on the
system dynamics are determined by both the state of the finite-re-
source fuel flowing through stages of the cascade and the proper-
ties of the heat bath (infinite thermal reservoir). Without bath
the dynamic topology would correspond to a simple sequence of
stages (a cascade) with the state dimensionality defined by the
number of independent coordinates of the fuel mixture. The pres-
ence of an infinite bath, the intensive parameters of which, i.e. its
temperature Te and chemical potentials le

i , do not change along
the process path, introduces into the mathematical model constant
parameters Te and le

i . In fact, it is the condition of an infinite bath
that enables us to treat all power functions pn as the bath-history
independent. The potential function of extremum work, obtained
via optimization of a work integral, is of exergy type, i.e. it contains
intensive parameters of the bath and state coordinates of the fuel
mixture. This property makes the (parameter dependent) function
of extremum work different from the (parameter independent)
thermodynamic potentials.

The range of optimization in this paper is restricted to thermo-
dynamic limits, or, more specifically, to a generalized quantity of
exergy type attributed to the single stream of fuel. This quantity
constitutes a generalized potential of extremum work that de-
pends on end states of the fuel mixture and its holdup time in
the system (time of fuel consumption). Alternatively, a generalized
potential could be expressed in terms of end states of the fuel
stream and the optimal Hamiltonian that is a measure of the pro-
cess intensity along an optimal path.

Generalized (dissipation-affected) power limits for a finite time
degrading of the fuel mixture are the main task of this paper. To
find these limits the system unit must contain a chemically active
part or a ‘‘reaction zone”. Only in ‘‘endoreversible” systems this
zone is a purely reversible part of the system, i.e. its efficiency of
energy production is given by a reversible formula. This reversible
formula constitutes a chemical counterpart of the familiar Carnot
formula gC = 1 � T2/T1, valid for thermal engines. In chemical en-
gines, however, the reversible formula refers to the chemical affin-
ity, which has nothing in common with the Carnot efficiency, gC.

Yet, the restriction to external irreversibilities is unnecessary; in
fact, thermodynamic models can go beyond ‘‘endoreversible lim-
its” i.e. they can treat internal irreversibilities as well, see Refs.
[5,6,12,13]. It is most essential, however, that in either of two
methodological versions of the thermodynamic approach, of which
the first gives up internal irreversibilities whereas the second one
estimates these from a model, the obtained power limits are stron-
ger than those predicted by the classical exergy. In short, this re-
sults from the ‘‘process rate penalty” that is taken into account in
every version of the approach.

In classical Carnot-like analyses the resource and environment
reservoirs are insensitive to the effect of dissipators (boundary lay-
ers, resistances, etc.) because the reversible situation requires the
spatial homogeneity of each reservoir. In the irreversible analysis,
performed here, which admits dissipative transports, inhomogene-
ities in transport potentials play essential role.

When calculating power limits, we search for purely physical ex-
trema with no regard to economic optima.

2. Thermodynamics of power generation in non-isothermal
chemical engines

This section analyzes a single-stage chemical process depicted
in Fig. 1. To obtain a power yield formula associated with a single
isomerisation reaction

B1 () B2

we apply balances of energy, entropy and mass. We assume that an
active reagent 1 and the sensible heat q1 are transferred to the reac-
tion zone through an inert gas. As the result of the chemical trans-
formation the reaction zone yields product 2 which is transferred
through the same inert gas to the environment. The energy balance

e1 ¼ e2 þ p ð1Þ

and the mass balance in terms of molar fluxes

n1 ¼ n10 ¼ n20 ¼ n2 ð2Þ
are combined with an equation describing the continuity of the en-
tropy flux

e1 � l10n10

T10
¼ e2 � l20n20

T20
ð3Þ

Eq. (3) holds in the chemically active, reversible part of the system
where the chemical reaction runs.

Eqs. (1)–(3) yield the power expression

p ¼ e1 � e2 ¼ 1� T20

T10

� �
e10 þ T20

l10

T10
� l20

T20

� �
n10 ð4Þ

The energy flux in the dissipative parts of the system is continuous,
for example

e1 ¼ q1 þ h1n1 ¼ q10 þ h10n10 ¼ e10 ð5Þ
Using the primed part of this equation in the power formula (4)
yields

p ¼ 1� T20

T10

� �
q10 þ ½ðh10 � h20 Þ � T20 ðs10 � s20 Þ�n10 ð6Þ

Thus, the combination of the second law and the reversible balance
of the entropy leads to power expression (6) in which the Carnot
efficiency of an endoreversible process
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g ¼ 1� T20

T10
ð7Þ

is the thermal component of a two-dimensional efficiency vector.
The second component of this vector is the exergy-like function of
the active component evaluated for the primed state 2 as the refer-
ence state

b0 ¼ h10 � h20 � T20 ðs10 � s20 Þ ð8Þ

Observe that in the considered case (where molar flux n is the effi-
ciency basis) the chemical component of efficiency is not non-
dimensional. Other cases of this sort will be observed later when
we shall also note the identity of efficiencies with active driving
forces. The primed quantities and equations are often applied in a
transformed form expressing all physical quantities in terms of
the bulk state variables of both fluids and certain controls. The latter
are related to fluxes of heat and matter. Applying the energy flux
continuity and mass flux continuity in Eq. (6) to eliminate fluxes
q10 and n10 on account of q1 and n1 yields

p ¼ 1� T20

T10

� �
q1 þ bn1 ð9Þ

where coefficient b is defined as

b ¼ cpðT1 � T10 Þ 1� T20

T10

� �
þ ðh10 � h20 Þ � T20 ðs10 � s20 Þ

� �
n1 ð10Þ

Note bilinear power structures in Eqs. (6) and (9), cf. [5]. Both these
equations are useful measures of chemical efficiency, yet they differ
in the heat flux (q1 or q10 ) accepted as the control variable. The sec-
ond component of power expressions (6) and (9) is associated with
the work production (consumption) due to the mass transfer. Its
interpretation is the product of mass flow n and exergy-like func-
tions b0 or b whose structure follows from combination of the en-
ergy and (conservative) entropy balances.

Yet, we may eliminate exergy-like functions b and b0 by passing
to the process description in terms of different fluxes. Leaving mass
flux n unchanged, we introduce a new energy flux, Q10 , called total
heat flux, which is defined by an equation

Q 10 � q10 þ T10 s10n10 ð11Þ

Clearly, Q10 is the product of temperature T10 and the total entropy
flux, the latter being the sum of entropy transferred with heat
q10=T10 and with substance s1n1. The virtue of flux Q10 is that the
power production p ¼ _w assumes in terms of Q10 a most suitable
form that contains the product of the chemical potential difference
of the active components and the invariant flux n

_w ¼ p ¼ 1� T20

T10

� �
Q 10 þ ðl10 � l20 Þn ð12Þ

In this case the chemical efficiency component is just the chemical
affinity for the single isomerisation reaction considered.

Alternatively, we may base the efficiency on a certain mass ana-
logue of heat flux Q 10 defined as follows

G10 � l10n10 ð13Þ

The quantity G10 is, in fact, the flux of Gibbs free energy of the active
component of fuel. The suitability of this quantity, which we call
Gibbs flux, follows from its capability of measuring quality of mass
flux n10 . In fact, flux G10 measures the quality of n10 in the same way
as heat Q10 measures the quality of entropy flux; the associated
‘‘quality potentials” being respectively l10 and T10 . With Eq. (13)
power expression (12) is

p ¼ 1� T20

T10

� �
Q 10 þ 1� l20

l10

� �
G10 ð14Þ
The entropy and mass balances of an endoreversible machine
take in terms of variables Q 10 and G10 the following simple forms

Q10=T10 ¼ Q20=T20 ð15Þ
G10=l10 ¼ G20=l20 ð16Þ

When the Gibbs flux is the efficiency basis the structure of the mass
transfer balance (16) is formally the same as that of the heat trans-
fer balance (15). Note that the endoreversible thermal efficiency in
terms of properties of the circulating fluid is the same as in the pro-
cess of pure heat transfer, i.e. it has the Carnot form.

The power expression in ‘‘the flux representation” conforms
with the general structure

p ¼ _w ¼ gðQ10 ;G10 ÞQ 10 þxðQ 10 ;G10 ÞG10 ð17Þ

Total heat flux Q10 and Gibbs energy flux G10 are two independent
fluxes driving the process of power production.

In a traditional analysis power (14) may be considered in terms
of two unknown (‘‘primed”) temperatures and two unknown
(‘‘primed”) chemical potentials of circulating fluid, these variables
being linked by entropy and mass balances across the reversible
part of the system. Such balance constraints make equations quite
difficult to use, and a method to overcome the difficulty should be
designed. The so-called Carnot quantities [1,4,14], play in this mat-
ter an essential role.

3. Non-isothermal engines in terms of Carnot variables

We shall now pass to corresponding relationships in terms of
the Carnot variables [1,4]. The rationale for their use follows from
the fact that temperatures and chemical potentials of circulating
fluid are not independent variables but they are constrained by
balances of entropy and substance through the engine. Application
of Carnot variables leads to the process description (consistent
with the entropy and mass balances) in terms of free controls that
assure suitable formulae for efficiency, heat and mass fluxes, and
power. Carnot temperature was comprehensively discussed earlier
[4,14]. The present text gives the good opportunity to discuss var-
ious definitions of the Carnot chemical potential, and the choice of
the most suitable one.

An easiest formal way to set a suitable definition of a Carnot
variable is to assume the invariance of efficiency, g or x. Consider-
ing, for example 1 �x, we obtain the equality
l20

l10
¼ l2

l0
ð18Þ

(possible coefficients of internal irreversibilities cancel in these
expressions). Definition of the Carnot chemical potential then fol-
lows as

l0 � l10

l20
l2 ð19Þ

Thus, when the chemical efficiency is based on the Gibbs energy
flux (and only in this case) the expression describing the Carnot
chemical potential is fully analogous to that describing the Carnot
temperature

T 0 � T10

T20
T2 ð20Þ

For the latter quantity, see Refs. [4,14]. The definition of Carnot tem-
perature T0 remains unchanged when the mass transfer accompa-
nies the heat transfer.

The thermal efficiency is the first component of two-dimen-
sional efficiency vector. For the thermal efficiency in terms of Car-
not temperature, we find

g ¼ 1� T2

T 0
ð21Þ
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The second efficiency component is related to the difference of
chemical potentials

x ¼ 1� l2

l0
ð22Þ

As the Gibbs flux is the efficiency basis and Eqs. (13), (14), (16) and
(17) hold, the chemical efficiency (22) has the Carnot form.

However, in terms of variables Q 10 and n10 the chemical effi-
ciency is neither non-dimensional nor of the Carnot structure;
rather it follows in the affinity units

f � p=n � l10 � l20 ð23Þ
whereas the associated Carnot chemical potential of the active com-
ponent is [1]

l0 � l2 þ l10 � l20 ð24Þ
Of course, the chemical efficiency (23) has dimensional units, those
of energy per mole. As Eq. (20), Eq. (24) is the trivial consequence of
the efficiency invariance, l10 � l20 ¼ l0 � l2. In the reversible case,
i.e. when l10 ¼ l1 and l20 ¼ l2, expression (24) reduces l0 to l1,
thus, in this case, the chemical component of the efficiency vector
equals l1 � l2. Note the direct link between efficiencies and driving
forces. For example, efficiency (23) is the driving force describing
the chemical affinity of the isomerisation reaction considered.

Carnot chemical potential, l0, should be redefined when a more
usual energy flux e = q +

P
hini is applied instead of Q. In this case

Eq. (4) leads to the following definition of Carnot chemical potential
l0 in terms of parameters of circulating fluid (T 01; T 02; l10 and l20 )

l0 ¼ T 0ðl2=T2 þ ðT20=T2Þðl10=T10 � l20=T20 ÞÞ ð25Þ

This quantity, which was occasionally used in some of our previous
papers (see, e.g. [4,14]) is equivalent with l0 of Eq. (24) only in an
isothermal case. Chemical potentials in Eqs. (19), (22) and (23)
are all correct still they differ because each refers to a different pair
of fluxes. In any process with mass transfer the work yield is char-
acterized by the vector of thermal efficiencies (g,x), such that its
first component is the Carnot efficiency.

Thermodynamic functions of state referred to Carnot tempera-
tures and chemical potentials are called Carnot functions. One
may always pass to corresponding relationships in terms of ‘‘ther-
modynamic Carnot quantities”. In this way one may deal with Car-
not energy, enthalpy, entropy, etc. Importantly, in terms of Carnot
thermodynamic variables, reversible structure of basic equations is
preserved in irreversible cases, and prediction is possible of irre-
versible equations on the basis of well-known or easily derived
equations of reversible processes.

At the ‘‘short circuit point” [2] the equalities T0 = T2 andl0 = l2 hold
and all components of efficiency vector (g,x) do vanish. Yet, at the
‘‘Carnot point” [2] efficiencies refer to the quasistatic process. In this
(reversible) case efficiency vector in Eq. (14) has the components

gC ¼ 1� T2

T1
ð26Þ

and

xC ¼ 1� l2

l1
ð27Þ

Leaving aside other special cases and returning to the problem
in terms of Q 10 and G10 we can state that a general optimization task
is to seek for optimal T0 and l0 which maximize power p in ‘‘Carnot
variables representation”

p � _w

¼ gðT 0; T2ÞQ10 ðT 0; T1;l0;l1Þ þxðl0;l2ÞG10 ðT 0; T1;l0;l1Þ
¼ ð1� T2=T 0ÞQ 10 þ ð1� l2=l

0ÞG10

¼ ð1� T2=T1ÞQ 10 þ ð1� l2=l1ÞG10 � T2Q 10 ð1=T 0 � 1=T1Þ
þ l2G10 ð1=l1 � 1=l0Þ ð28Þ
The expression in the second line is the irreversible power expres-
sion that was split into the reversible part (two expressions in the
third line without Carnot controls) and an irreversible part (the
expression which is the negative product of T2 and entropy produc-
tion). Note that Carnot temperature and Carnot chemical potential
are independent variables and the power is extremized with respect
to these variables as free process controls. The reversible balances
of entropy and mass across the (perfect) thermal machine are in-
cluded; thus the extremizing procedure works without constraints.

4. Entropy production in steady systems

Let us determine an expression for the entropy production from
the entropy balance of a steady system. From the entropy balance
of an overall system composed of reservoirs and reactor the inten-
sity of the entropy production rs follows in terms of the reservoir
parameters and system fluxes

rs ¼
q2

T2
� q1

T1
þ ðs2 � s1Þn ð29Þ

Using in this equation the energy conservation law

q1 þ h1n ¼ q2 þ h2nþ p ð30Þ

to eliminate flux q2, we obtain

rs ¼
q1 þ h1n� h2n� p

T2
� q1

T1
þ ðs2 � s1Þn ð31Þ

Whence, in terms of fluxes q1 and n

rs ¼ q1
1
T2
� 1

T1

� �
þ ðl1 � l2Þnþ ðT1 � T2Þs1n

T2
� p

T2

¼ ðgC � gÞq1 þ ðbC � bÞn
T2

ð32Þ

Eqs. (11) and (14) yield in terms of other fluxes and corresponding
efficiencies,

rs ¼ Q 1
1
T2
� 1

T1

� �
þ ðl1 � l2Þn

T2
� p

T2

¼ ðgC � gÞQ 1 þ ðfC � fÞn
T2

¼ ðgC � gÞQ 1 þ ðxC �xÞG1

T2
ð33Þ

Eqs. (32) and (33) generalize to the non-isothermal case an earlier
result limited to isothermal situations [1]. They show that, modulo
to the multiplier (T2)�1, the isothermal component of the entropy
production is the product of the total active flux and the deviation
of chemical efficiency f from the corresponding efficiency of the
reversible process, fC. Yet, as shown by Eq. (33), the entropy produc-
tion formula of an non-isothermal process contains the second
(thermal) component equal to the product of total (i.e. mass trans-
fer including) heat flux Q1 � q1 + T1s1n and the deviation of thermal
efficiency g from the Carnot efficiency.

The subscript C points out that the reversible efficiencies gC, fC

and xC refer to the so-called Carnot point of the system, also called
‘‘open circuit point” [2]. This point is associated with vanishing
currents and upper, reversible limits for thermal and chemical
efficiencies.

5. Dissipative availabilities in dynamical systems

As resources are finite by nature, in real systems only the sec-
ond fluid constitutes an infinite constant reservoir (e.g. an environ-
ment), whereas the first fluid (a resource) changes its properties
when it proceeds through stages in time. We have to attribute
changes in state variables to each considered flux.

For the mass flux, which equals G10=l10 , the suitable state coor-
dinate is the invariant amount of reacting substance N ¼ N10 ¼ N20
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or the concentration X = N/I. For the entropy flux, Q 10=T10 , the
state variable is the entropy S. In the formulae below we use
symbols S and T for the variable entropy S1(t) and temperature
T1(t) in the bulk of the resource fluid. For an endoreversible pro-
cess the yield of the specific work at flow in terms of the Carnot
controls is

W � P=I ¼�
Z Tf ;lf

T i ;li
fðT 0 � T2ÞdSþ ðl0 � l2ÞdNg

¼ �
Z Tf ;lf

T i ;li
fðT � T2ÞdSþ ðl� l2ÞdNg

�
Z Tf ;lf

T i ;li
fðT 0 � TÞdSþ ðl0 � lÞdNg ð34Þ

In the second line the first integral is the reversible work, whereas
the second integral is the lost work. When the subscript 2 refers to
the state of environment, Eq. (29) leads to a generalized or finite
time exergy A = max W satisfying the formula

A ¼max W �maxðP=IÞ

¼max
Z Tf ;lf

T i ;li
f�ðT � T2ÞdS� ðl� l2ÞdNg

¼ Hi � Hf � T2ðSi � Sf Þ � l2ðN
i � Nf Þ

�min
Z Tf ;lf

Ti ;li
fðT 0 � TÞdSþ ðl0 � lÞdNg ð35Þ

Eq. (35) expresses – in terms of Carnot controls – the Gouy–Stodola
law for the endoreversible system, cf. [15,16]. In terms of the Carnot
controls the thermodynamic form of the lost work expression
(without kinetics incorporated) is classical, and it is the sum of
products of thermodynamic fluxes and forces:

T2Sr ¼
Z Tf

T i

fðT 0 � TÞ _Sþ ðl0 � lÞ _Ngds ð36Þ

As shown by Eq. (35) the maximum work produced by the en-
gine equals to the change of the classical exergy reduced by the lost
work or the product of the reservoir’s temperature and the (mini-
mum) entropy production. This expresses, of course, the Gouy–Sto-
dola law which links the lost work with the entropy generation. An
analogous equation is obtained for the power consumer, but then
the effect of entropy production is added to the classical exergy
change, i.e. an increase of work input is necessary to assure the re-
quired state change in a finite time.

Eq. (35) defines the ‘‘endoreversible” limit for the work produc-
tion between two given states and for a given number of transfer
units. Even this simple limit is stronger than that the one predicted
by the classical exergy. What can be said about a yet stronger limit
which involves an internal dissipation in the participating thermal
machine? We need to consider the hierarchy of limits. For limits of
higher rank, an internal entropy generation is included in the dis-
sipation model and then Eq. (35) is replaced by its simple general-
ization which contains the sum of the ‘‘endoreversible” and
‘‘internal” productions of the entropy, Sendo

r þ Sint
r , in agreement

with the Gouy–Stodola law. In general, extra components of total
entropy source are included at the expense of a more detailed
information input, but with the advantage that the limit is closer
to reality.

For a sufficiently high rank of the limit, it approaches the
real work quite closely, but the cost of the related information
is very large. What is important then, is a proper compromise
associated with the accepted limit of a finite rank. For limits
of various ranks, inequalities are related to A and real work
Wreal that are valid in the form Wreal > DAk > DA1 > DA0, where
DA1 refers to the change of ‘‘endoreversible exergy”, and DA0
pertains to the change of the classical exergy. The classical exer-
gy change constitutes then the weakest or the worst standard-
ized limit on the real work. In the described scheme any
considerations of relations between the irreversibility and costs
are unnecessary.

6. Characteristics of steady isothermal engines

Expressing chemical potentials

lk ¼ l0k þ RT ln xk ¼ l0k þ RT lnðXk=1þ XkÞ ð37Þ

in terms of molar fraction of the active component in ‘‘upper” and
‘‘lower” part of the system (k = 1,2), we obtain the affinity-related
efficiency (23) in the form

f ¼ l10 � l20 ¼ f0 þ RT ln
x10

x20

� �
� f0 þ RT ln

X10 ð1þ X20 Þ
X20 ð1þ X10 Þ

� �
ð38Þ

where

f0 ¼ l010 � l020 ¼ l01 � l02 ð39Þ

The last equation applies the property of chemical passivity for each
component in the chemically inactive parts of the system, where
only diffusive transport takes place. The equation describes, in fact,
the standard Gibbs energy for the isomerisation reaction consid-
ered. The constant f0 involves chemical potentials of substrate
and product in their reference states. The reference value f0 van-
ishes only if both components are identical. In general, however,
the constant f0 is non-vanishing.

When both reservoirs are infinite the process is at the steady-
state. The mass transfer between each reservoir and the production
section of the system is described by certain kinetic equations. For
simplicity, we assume that these equations are linear. The mass
balances for the substance transferred, produced and consumed
are contained in the equations

n ¼ g1ðx1 � x10 Þ ð40Þ

and

n ¼ g2ðx20 � x2Þ ð41Þ

In order to determine work characteristics of the chemical en-
gine at the steady-state (unlimited stock of fuel) one searches for
concentrations x10 and x20 expressed in terms of a control variable.
For the chemical engine a suitable quantity can be efficiency f, Eqs.
(38) and (39). This means that the following system of equations
should be solved

f ¼ f0 þ RT ln
x10

x20

� �
ð42Þ

g1ðx1 � x10 Þ ¼ g2ðx20 � x2Þ ¼ n ð43Þ

From the first equation of this set we find

x20

x10
¼ exp � f� f0

RT

� �
ð44Þ

Substituting x20 from this equation to the first equality of Eq. (43)
written in the form

g1x10 þ g2x20 ¼ g1x1 þ g2x2 ð45Þ

one obtains

x10 ¼
g1x1 þ g2x2

g1 þ g2 exp � f�f0
RT

� � ð46Þ

and

x20 ¼
g1x1 þ g2x2

g1 þ g2 exp � f�f0
RT

� � exp � f� f0

RT

� �
¼ g1x1 þ g2x2

g1
f�f0

RT þ g2

ð47Þ
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Each of the last two equations can be used in the balance-
kinetic formula (43). This leads to an equation describing the
feed flux of the active component of fuel in terms of chemical
efficiency

n ¼ g1x1 � g1x10 ¼ g1x1 � g1
g1x1 þ g2x2

g1 þ g2 exp � f�f0
RT

� � ð48Þ

This equation can be yet simplified into the form

n ¼ g1ðx1 � x10 Þ ¼ g1g2
x1 exp � f�f0

RT

� �
� x2

g1 þ g2 exp � f�f0
RT

� �
¼ g1g2

x1 � x2 exp f�f0
RT

� �
g1 exp f�f0

RT

� �
þ g2

ð49Þ

Thus, the feed rate of the system by the active reactant can be
described by two equivalent expressions

n ¼
x1 � x2 exp f�f0

RT

� �
ðg1Þ

�1 þ ðg2Þ
�1 exp f�f0

RT

� � ð50Þ

or

n
g1
¼

x1 � x2 exp f�f0
RT

� �
1þ ðg1=g2Þ exp f�f0

RT

� � ð51Þ

The function inverse to the above defines the chemical efficiency in
terms of the reactant’s feed rate n

f ¼ f0 þ RT ln
x1 � ng�1

1

ng�1
1 ðg1=g2Þ þ x2

� �
ð52Þ

This equation shows that an effective concentration of the reac-
tant in the upper reservoir x1eff ¼ x1 � g�1

1 n is decreased, whereas
an effective concentration of the product in the lower reservoir
x2eff ¼ x2 þ g�1

2 n is increased due to the finite mass flux. Conse-
quently, the efficiency f decreases nonlinearly with n. When the ef-
fect of the resistance g�1

k is ignorable or the flux n is very small,
reversible efficiency, fC, is attained. Quite generally the power
function described by the product f(n)n exhibits the maximum
power for a finite value of the flux n.

Eqs. (4) and (50) yield power in terms of efficiency f of an iso-
thermal process

p ¼ ðl10 � l20 Þn ¼ f
x1 � x2 exp f�f0

RT

� �
ðg1Þ

�1 þ ðg2Þ
�1 exp f�f0

RT

� � ð53Þ

This power function exhibits a maximum for a certain efficiency, f,
this efficiency being a chemical analogue of the well known Cham-
badal–Novikov–Curzon–Ahlborn efficiency (CNCA efficiency [2,12]).
The maximum power can be considered with respect to control
variables n and f, for example. Yet, other control variables can be
considered.

Similarly like in heat processes, for which the Carnot tempera-
ture was applied as a suitable control [4,14], we can use the Carnot
chemical potential, l0. For an isothermal process Carnot chemical
potential l0 may be obtained from the invariance of the chemical
efficiency

l10 � l20 ¼ l0 � l2 ð54Þ

Therefore,

l0 ¼ l2 þ l10 � l20 ¼ l2 þ f ð55Þ

The structure of l0 may be more involved in non-isothermal pro-
cesses when the classical definition of heat flux is applied. However
for the generalized heat flux, Q10 � q10 þ T10 s10n, Carnot chemical po-
tential l0 represented by Eq. (55) remains valid even in non-isother-
mal cases. Chemical efficiency of any (isothermal or not) process of
energy generation expressed in terms of l0 is then f = p/n = l0 � l2.
The quantity l0 can thus be a process control suitable in consid-
erations of the connection between the rate change of the resource
potential and the process driving force. Whenever l0 = l1 the pro-
cess rate vanishes, and equations of classical thermodynamics are
sufficient to characterize the system. For l0 < l1 the driving reac-
tant (fuel) is consumed in the upper reservoir, its chemical poten-
tial l1 decreases gradually, and the system produces power. In the
opposite case, when l0 > l1, the system consumes power for the
purpose of the resource utilization, to increase its chemical poten-
tial. These properties are valid regardless of particular structure of
kinetic equations (linear or not).

At the Carnot point (also called ‘‘open circuit point of the sys-
tem” [2]), rates and power vanish and the system efficiency f at-
tains its upper limit. Only then is this efficiency identical with
the reversible chemical affinity of the reaction. For our model

fC ¼ p=n ¼ l1 � l2 ð56Þ

Putting Eq. (50) or (51) to zero yields

x1 ¼ x2 exp
fC � f0

RT

� �
ð57Þ

This formula leads to the limiting reversible efficiency in the form
determined by the chemical affinity of reaction at the reversible
Carnot point

fC ¼ f0 þ RT ln
x1

x2

� �
� AC ð58Þ

However, the power produced at the ‘‘open circuit” state equals
zero, corresponding with vanishing feed flux of the driving reactant.

Intensity of the entropy generation in the system, Eq. (33), can
be presented in several forms. For the isothermal system consid-
ered three forms of rs can be discussed. In the first, the controlling
quantity is the efficiency f

rs ¼
ðfC � fÞn

T
¼ ðfC � fÞ

T
x1 � x2 exp f�f0

RT

� �
ðg1Þ

�1 þ ðg2Þ
�1 exp f�f0

RT

� �
 !

ð59Þ

In the second, the control variable is Carnot chemical potential

rs ¼
ððl1 � l2Þ � ðl0 � l2ÞÞn

T

¼ ðl1 � l0Þ
T

x1 � x2 exp l0�l2�f0
RT

� 	� 	
ðg1Þ

�1 þ ðg2Þ
�1 exp l0�l2�f0

RT

� 	 ð60Þ

In the third form the control is the fuel flux n; then, from Eq. (52),

rs ¼
ðfC � fÞn

T
¼ R ln

x1

x2

� �
ng�1

2 þ x2

x1 � ng�1
1

� �� �
ð61Þ

In the so-called ‘‘short circuit point”, there is no power produc-
tion for any value of f0, despite possible chemical reaction. Only
entropy is then produced with a maximum intensity

rssc ¼
fC

T
x1 � x2 exp �f0

RT

� �
ðg1Þ

�1 þ ðg2Þ
�1 exp �f0

RT

� �
 !

¼ ðl1 � l2Þ
T

x1 � x2 exp �f0
RT

� �� �
ðg1Þ

�1 þ ðg2Þ
�1 exp �f0

RT

� � ð62Þ

When f0 = 0 the entropy production at the ‘‘short circuit point” cor-
responds with the situation without chemical reaction and energy
generation

ðrsÞf0¼0 ¼
fCnzw

T
¼ fC

T
x1 � x2

ðg1Þ
�1 þ ðg2Þ

�1

 !

¼ T�1 ðl1 � l2Þðx1 � x2Þ
ðg1Þ

�1 þ ðg2Þ
�1 ð63Þ
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Clearly, only at the short circuit point and for the associated absence
of power yield the entropy production at this point (modulo to mul-
tiplier T�1) is equal to the product of the reaction rate and its chem-
ical affinity. This is the classical result, which, however, does not
hold when the system produces power (i.e. belongs to the class of
‘‘active systems”).

Assuming a finite f0, we determine the rate of the system feed by
the active reactant in two alternative forms. The first one describes
the feed flux n in terms of f, whereas the second – in terms of l0

n ¼
x1 � x2 exp f�f0

RT

� �
ðg1Þ

�1 þ ðg2Þ
�1 exp f�f0

RT

� � ¼ x1 � x2 exp l0�l2�f0
RT

� 	
ðg1Þ

�1 þ ðg2Þ
�1 exp l0�l2�f0

RT

� 	 ð64Þ

Power produced in the reactor may be determined in three forms, as
a function of f, in terms of l0 or as a function of n. The first two
forms are described by an equation

p ¼ ðl10 � l20 Þn ¼ f
x1 � x2 exp f�f0

RT

� �
ðg1Þ

�1 þ ðg2Þ
�1 exp f�f0

RT

� �

¼
l0 � l2

� �
x1 � x2 exp l0�l2�f0

RT

� 	� 	
ðg1Þ

�1 þ ðg2Þ
�1 exp l0�l2�f0

RT

� 	 ð65Þ

Using inverse function f(n), Eq. (52), one may describe power in
terms of the reagent flux n

p ¼ fðnÞn ¼ f0nþ RTn ln
x1 � ng�1

1

ng�1
2 þ x2

� �
ð66Þ

Eq. (52) proves that efficiency f decreases nonlinearly with feed flux
n. The consequence of this property is the maximum of the product
f(n)n describing the power yield. The maximum power point is the
result of maximizing of the power function with respect to its free
control variable, f, l0 or n. Analytical methods are seldom effective.
However, one can use diagrams describing functions p(f), p(l0) or
p(n) to determine the maximum point graphically. Information
regarding the location of maximum point can also be obtained by
a numerical search.

System characteristics in terms of control l0 are presented in
Figs. 2 and 3.

Eq. (66) shows that a maximum of power p is attained for a fuel
flux n satisfying an equation

dp
dn
¼ f0 þ RT ln

x1 � ng�1
1

ng�1
2 þ x2

� �
� RTn

g�1
1 x2 þ g�1

2 x1

ðx1 � ng�1
1 Þðng�1

2 þ x2Þ
¼ 0

ð67Þ
Fig. 2. Entropy generation in the engine in terms of C
Its numerical solution generates a function describing the optimal
feed of the system by the active reactant

nmp ¼ f ðf0; T; x1; x2; g1; g2Þ ð68Þ

Substituting this result into Eq. (26), leads to the chemical counter-
part of the Chambadal–Novikov–Curzon–Ahlborn efficiency (CNCA
efficiency; [2,12]). It describes the efficiency fmp of the chemical en-
gine at the maximum power point in terms of the system properties

fmp ¼ f ðf0; T; x1; x2; g1; g2Þ ð69Þ

The curve of produced power has two zero points. The first is
the ‘‘short circuit point” (also the point of vanishing efficiency),
and, the second is the ‘‘open circuit point” or Carnot point at which
the feed of the system with the active component is infinitely slow.
Eq. (50) proves that the feed rate of the active reagent in the short
circuit point (where f = 0) is

nzw ¼
x1 � x2 exp �f0

RT

� �
ðg1Þ

�1 þ ðg2Þ
�1 exp �f0

RT

� � ð70Þ

For a non-vanishing f0 ¼ l010 � l020 ¼ l01 � l02, the short circuit
point corresponds with a particular, ‘‘purely dissipative” state of
the system at which lossy elements predominate so significantly
that the chemical reaction does not produce any power, despite of
non-vanishing reaction rate and existing finite potential of f0 (but
not f) for the production of this power. For f0 = 0 the discussed
equation describes the situation, in which the reactor does not exist,
the fuel stream flows by two sequentially connected conductors,
and molar flux of the reactant, n, is determined by the specification
of the overall conductance g = ((g1)�1 + (g2)�1)�1. Consequently, for
f0 = 0 and at the short circuit point of the system

nzw ¼
x1 � x2

ðg1Þ
�1 þ ðg2Þ

�1 ð71Þ
7. Sequential models for dynamic power generators

When resources are limited their quality decreases in time, and
dynamical processes arise. Power optimization requires then vari-
ational methods to maximize power integrals subject to process
differential constraints. Taking into account analytical difficulties
we often apply methods of discrete optimization, e.g. the dynamic
programming method. An extremum problem for a power integral
is then broken down into an optimization problem for a cascade
with a finite number of stages.
arnot chemical potential l0 as a control variable.
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7.1. Discrete models

Regarding computer needs, we shall now introduce a suitable
discrete model of the chemical engine. We consider the optimal
fuel consumption in a cascade of K engines, with efficiency fk or lo-
cal feed nk as control variables at kth stage. We also test Carnot
chemical potentials l

0k as possible controls. To describe fuel con-
sumption we exploit the mass balance. Some suitable notions are
introduced first.

Let us introduce a cumulative flux of active reactant over the
first k stages of the cascade, Nk = Rnl, where l = 1,2, . . .,k. The se-
quence of local fluxes nl (characterized by ‘‘upper” potentials lk

1

in the kth stage engine) describes allocations of Nk between stages
1,2, . . .,k. Each local flux nk of the active reagent at stage k equals
the change of cumulative mass flux Nk � Nk�1.

The mass balance at the stage k

nk � Nk � Nk�1 ¼ �IðXk
1 � Xk�1

1 Þ ¼ �Icmðlk
1 � lk�1

1 Þ ð72Þ

shows that the local molar flux at the stage k (an interval of the
cumulative mass flux Nk) can be evaluated as the (negative) product
of molar flux of inert, I, and the change of reactant’s concentration,
DXk. Mass capacity cm can be introduced as the partial derivative of
the concentration X with respect to the chemical potential at the
constant temperature. Then, in the case of an isothermal mass ex-
change, any change in the cumulative coordinate N can be evalu-
ated in terms of the reactant’s chemical potential.

The reactant’s flux nk can be eliminated on account of difference
Xk

1 � Xk�1
1 with the help of Eq. (72). Simultaneously it is convenient

to have at our disposal a separate expression for efficiency fk in
terms of concentrations Xk

1 and Xk�1
1 . Both these needs are satisfied

in one stroke below. Mass balance (72) and the current-efficiency
characteristic (51) yield an expression

�IðXk
1 � Xk�1

1 Þ ¼ Nk
1 � Nk�1

1

¼
x1 � x2 exp f�f0

RT

� �
1þ ðg1=g2Þ exp f�f0

RT

� � b0k1 ðA
k � Ak�1Þ ð73Þ

where b01 � b1y ¼ b1a1=ða1 þ a2Þ and b0k1 ðA
k � Ak�1Þ ¼ gk

1. Whence

� IðXk
1 � Xk�1

1 Þ
b0k1 ðA

k � Ak�1Þ
� nk

gk
1

¼
x1 � x2 exp f�f0

RT

� �
1þ ðg1=g2Þ exp f�f0

RT

� � ð74Þ

Since the inversion of Eq. (51), i.e. the right hand side of Eq. (77), is
Eq. (52)

f ¼ f0 þ RT ln
x1 � ng�1

1

ng�1
1 ðg1=g2Þ þ x2

� �
ð52Þ

the chemical efficiency fk in terms of Xk
1 and Xk�1

1 is

fk ¼ fk
0 þ RT ln

Xk
1

1þXk
1
þ IðXk

1�Xk�1
1 Þ

b0k1 ak
vFkðlk�lk�1Þ

� IðXk
1�Xk�1

1 Þ
b0k1 ak

vFkðlk�lk�1Þ
g1
g2

� 	
þ x2

0
B@

1
CA ð75Þ

In the engine mode the concentration of the active reactant can only
decrease along a path, thus the term with the discrete slope DXk/Dl
in Eq. (75) is negative. Consequently, the efficiency of a stage work-
ing in the engine mode is lower than the Carnot efficiency.

The quantity

I
b01avF

� HTU1 ð76Þ

has units of length, and is known from the mass transfer theory as
the ”height of the mass transfer unit” (HTU). In Eq. (76) it is referred
to partial mass transfer coefficient of active reactant, b01, although an
analogous quantity could be defined for the product. The non-
dimensional length
s1 � l=HTU1 ð77Þ

is identical with the ‘‘number of transfer units” NTU for mass trans-
fer. Since it is proportional to the system’s extent l and hence to the
contact time of active reactant with mass exchange area, it also
plays the role of a non-dimensional time, and this is why it is des-
ignated by s1

pk

I
¼ � f0 þ RT ln

Xk
1

1þXk
1
þ Xk

1�Xk�1
1

sk
1�s

k�1
1

x2 � j Xk
1�Xk�1

1
sk

1
�sk�1

1

0
B@

1
CA

8><
>:

9>=
>;ðXk

1 � Xk�1
1 Þ ð78Þ

The conductance ratio is defined as coefficient j � g1/g2.
The total power delivered from the N-stage process per unit flux

of the inert is the sum of contributions of stages. This sum is a dis-
crete functional which is maximized by the suitable choice of the
interstage concentrations and allocation of time intervals between
the stages.

WN �
XN

k¼1

wk

¼ �
XN

k¼1

f0 þ RT ln

Xk
1

1þXk
1
þ Xk

1�Xk�1
1

sk
1
�sk�1

1

x2 � j Xk
1�Xk�1

1
sk

1�sk�1
1

0
B@

1
CA

8><
>:

9>=
>;ðXk

1 � Xk�1
1 Þ ð79Þ
7.2. Continuous models

Models of continuous systems producing power are obtained as
limits of models of suitable discrete systems for number of stages
approaching infinity. An example is the continuous limit describing
an integral of total power per unit molar flow of the inert

W ¼ �
Z sf

1

si
1

f0 þ RT ln
X

1þX þ dX
ds1

x2 � j dX
ds1

 !( )
dX
ds1

ds1 ð80Þ

The continuous variable X plays here the same role as the discrete
variable Xk

1 in Eq. (79). Eqs. (79) and (80) represent respectively dis-
crete and continuous Lagrange descriptions of the optimized
process.

We can also apply controls that are certain state variables, and
have no interpretation of rates. For example, using Carnot chemical
potential l0 = l2 + f in integral (80) we obtain

W ¼ �
Z sf

1

si
1

f
dX
ds1

ds1 ¼ �
Z sf

1

si
1

ðl0 � l2Þ
dX
ds1

ds1 ð81Þ

where l0 satisfies an equation

l0 ¼ l2 þ f0 þ RT ln
X

1þX þ dX
ds1

x2 � j dX
ds1

 !
ð82Þ

Its solution with respect to the time derivative yields

dX
ds1
¼ �

X
1þX � x2 exp l0�l2�f0

RT

� 	
1þ j exp l0�l2�f0

RT

� 	 ð83Þ

Using in this formula an expression linking molar fraction x = X/
(1 + X) with chemical potential

X
1þ X

¼ exp
l� l01

RT

� �
ð84Þ

and introducing mass capacity cm(l)

cmðlÞ �
dX
dl
¼ 1

RT

exp
l�l01

RT

� 	
1� exp

l�l01
RT

� 	� 	2 ð85Þ
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we obtain a nonlinear equation of process dynamics in terms of the
chemical potential of the active component of fuel

cmðlÞ
dl
ds1
¼ �

exp
l�l01

RT

� 	
� x2 exp l0�l2�f0

RT

� 	
1þ j exp l0�l2�f0

RT

� 	 ð86Þ

A corresponding power formula has the form

W ¼
Z sf

1

si
1

ðl0 � l2Þ
exp

l�l01
RT

� 	
� x2 exp l0�l2�f0

RT

� 	
1þ j exp l0�l2�f0

RT

� 	 ds1 ð87Þ

Dynamical optimization tackles integral (87) subject to differential
constraint (86). The mathematical structure of the power integral
and constraint is here much more complicated than in the respec-
tive heat problem, where use of the Carnot representation assured
a simplest formal structure of the mathematical problem, see
[15–18] and Appendix. This also substantiates use of numerical
methods.
8. A computational algorithm for dynamical process with power
maximization

We shall now describe a computational algorithm in which the
discrete problem of maximum power is treated as an optimal con-
trol problem, and a suitable control variable is chosen to assure a
relatively simple model. The simplicity condition is satisfied by a
simple link of control with rate change of reactant’s concentration
in the fuel, dX/ds1. In the discrete version this rate is replaced by
the difference ratio DX/Ds1.

We introduce a control variable describing the fuel
consumption

vk � � nk

g1
ð88Þ

It is negative in engine modes and positive in power consumption
modes. Under the assumption of Lewis analogy we may write

v � � n
g1
¼ �Nk � Nk�1

ck
1 � ck�1

1

¼ IðXk
1 � Xk�1

1 Þ
b0k1 ðA

k
1 � Ak�1

1 Þ
¼ Xk

1 � Xk�1
1

sk
1 � sk�1

1

ð89Þ

u � � q1

g1
¼ �Q k � Q k�1

ck
1 � ck�1

1

¼ IcðTk
1 � Tk�1

1 Þ
a0k1 ðA

k
1 � Ak�1

1 Þ
¼ Tk

1 � Tk�1
1

sk
1 � sk�1

1

ð90Þ

The optimization problem searches for a maximum of the perfor-
mance index

WN ¼ �
XN

k¼1

f0 þ RTk ln
Xk

1ð1þ Xk
1Þ
�1 þ vk

x2 � jvk

 !( )
vkhk ð91Þ

(j � g1/g2) subject to difference constraints

Xk
1 � Xk�1

1 ¼ vkhk ð92Þ
sk

1 � sk�1
1 ¼ hk ð93Þ

In a non-isothermal problem an extra equation has to be included to
treat temperature changes

Tk
1 � Tk�1

1 ¼ ukhk ð94Þ

and the power function has to be enlarged to include the thermal
component of power yield. Some information related to the thermal
component is given in Appendix.

Change in the sign of performance function (91) transforms the
problem into a discrete problem of power minimization, whose
numerical solution is outlined below.
We apply the method of dynamic programming which searches
for a solution of Bellman’s recurrence equation. A general form of
this equation is

Rnðxn; tnÞ ¼min
un ;hn
fln

0ðxn; tn;un; hnÞhn þ Rn�1ðxn

� fnðxn; tn;un; hnÞhn; tn � hnÞg ð95Þ

where Rn(xn, tn) = min(�Wn) is the function describing the mini-
mum of power consumed. This is a function of optimal cost type.
In an isothermal case x = X1, u = v, and t = s.

Applying Eq. (95) to the isothermal problem described by Eqs.
(91)–(93), the following recurrence equation is obtained

RkðXk; skÞ ¼ min
uk ; hk

f0 þ RT ln
Xk

1ð1þ Xk
1Þ
�1 þ vk

x2 � jvk

 !( )
vkhk

(

þRn�1ðXk
1 � hnvk; sk � hkÞ

o
ð96Þ

While the analytical solving of the discrete problem (91)–(93) is a
difficult task, it is quite easy to solve recurrence Eq. (96) numeri-
cally. Low dimensionality of state vector in Eq. (96) assures a decent
accuracy of DP solution. Moreover, an original accuracy can signifi-
cantly be improved after performing the so-called dimensionality
reduction associated with the elimination of time tk as the state var-
iable by using a Lagrange multiplier k. In the transformed problem,
without coordinate tk, accuracy of DP solutions is high. Section 2.3
of Ref. [15] discusses related computational issues of this sort with
more detail (See Fig. 4).

The block scheme of computational process (Fig. 4) is discussed
in [1], where the system state is represented by concentration of
active component of fuel, Xk

1, as in Eq. (96).
For a continuous isothermal process with constant coefficients

g1,g2, j, . . ., an analytical condition associated with the power opti-
mum or Eq. (96) can be determined in the form of constancy of an
energy-like function along an optimum path. This energy-like
function, is, in fact, the Hamiltonian of the power optimization
problem, that is expressed here in terms of rates rather than ad-
joint variables (the latter being the natural variables of the Hamil-
tonian). The optimality condition with respect to the rates vk and uk

proves that the state adjoints are equal to the partial derivatives of
the following Lagrangian

L ¼ f0
dX
ds1
þ RT

dX
ds1

ln
X

1þX þ dX
ds1

x2 � j dX
ds1

 !

� f0
_X þ RT _X ln

x1ðXÞ þ _X

x2 � j _X

 !
ð97Þ

with respect to its rates _X ¼ dX=ds1 and _T ¼ dT=ds1. We have de-
fined x1(X) � X(1 + X)�1. Eq. (97) leads to the energy-like function
as the Legendre transform of Lagrangian (97).

HðX; _XÞ � oL

o _X
_X � L ¼ RT _X2 x2 þ jx1ðXÞ

ðx1ðXÞ þ _XÞðx2 � j _XÞ
ð98Þ

In a close vicinity of the thermodynamic equilibrium where relaxa-
tion rates are very low (close to quasistatic ones) the above optimal-
ity condition simplifies to the form

HðX; _XÞ ¼ RT _X2 x2 þ jx1ðXÞ
x1ðXÞx2

¼ RT _X2 1þ X
X
þ j

x2

� �
ð99Þ

We observe that for low rates and large concentrations X (mole frac-
tions x1 close to the unity) optimal relaxation rate is approximately
constant in time. In an arbitrary situation, however, optimal rates _X
are state dependent so as to preserve the constancy of Hamiltonian
(99). No constancy of chemical driving forces along the optimal
path is observed.



Fig. 3. Engine characteristics: efficiency, driving flux, and power yield vs. Carnot chemical potential l0 .

Fig. 4. Principle of multistage power generation in a dynamical chemical engine.
The system stage comprizes: fuel mixture, engine and environment; at each stage
mechanical power is generated. Maximized is total flux of resulting power. Control
hn characterizes stage extent or holdup time of the fluid at the stage n, whereas
control un is the fuel supply control. Xn is concentration of the active component in
the fuel at stage n. In complex reaction systems coordinates of the vector of Carnot
chemical potentials l

0n may be applied in place of concentrations Xn.
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9. Results of computations

Enhanced limits are obtained for dynamical extrema of power
production or consumption in sequential chemical systems, for a
finite number of steps or a finite time of resource exploitation.
New results refer to the multistage production (consumption) of
power in the chemical process which is driven by the diffusive
transport step (Stefan diffusion through the inert) and takes into
account the effect of drying out of the active component of fuel.
The results of calculations for cost function Rn(Xn, tn) = min(�WN)
show that the power limits differ for power generated and con-
sumed, and that they depend on global working parameters of
the system, e.g. total number of mass transfer units, factor of inter-
nal irreversibilities within the power generator, average process
rate, number of process steps, etc. These solutions provide the de-
sign bounds for energy generators that are stronger than the famil-
iar thermostatic bounds (i.e. classical limits for energy
transformation).

As shown by the results of calculations, optimal process inten-
sity is measured in terms of Hamiltonian H or the numerical value
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of Lagrange multiplier k, an adjoint variable of the process dura-
tion. The numerical value of k is associated with the global con-
straint imposed on the total holdup time or the size of the
equipment. The multiplier k is also the intensity factor whose
numerical value is equal to the Hamiltonian of the power optimi-
zation problem. As such, k is constant along an optimal trajectory
of the process in which a prescribed final state is attained in a pre-
scribed time. This constant value defines a cost of increase of the
process duration by one unit. This is finally a number that should
be used in calculations when the process equations are solved for
an unspecified time, sN

1 .
In the classical thermostatics, both limiting lines of thermody-

namic bounds (upper bound for power produced and lower bound
for power consumed) do coincide. However, the lines of classical
bounds are often too far from the working regimes of real pro-
cesses to make these bounds fully useful. The results obtained
show the divergence of limiting lines for two basic process modes,
mode of power production and mode of power consumption. They
prove that the second law of thermodynamics does exclude some
processes that are otherwise allowed by thermostatics. The region
of the excluded processes grows for shorter process durations
associated with faster mean rates and larger entropy production.
Fuel holdup time and number of transfer units play an essential
role. Nonlinearities and state dependence of Hamiltonian deter-
mine complex changes of chemical and thermal efficiencies and
driving forces along the optimal paths of power production
process.
10. Concluding remarks

Analysing the mechanical energy yield in nonlinear chemical
systems we have developed an approach that uses kinetic integrals
of power and provides the results of energy limits stronger than
those known in classical thermodynamics. In systems with power
production (engine modes) the power optimization approach per-
formed for finite durations and finite rates leads to the decreased
upper bounds, i.e, it provides lower and hence more realistic
bounds for the power yield in comparison with classical thermody-
namics. In systems with power consumption the power optimiza-
tion approach leads to the increased lower bounds, meaning that
these lower bounds are higher and hence more realistic than the
lower bounds determined in classical thermodynamics (thermo-
statics). The enhanced nature of power limits in chemical systems
constitutes a practical consequence of nontrivial implications of
the second law of thermodynamics.

Also, we stress the hierarchical nature of power limits, where
the ‘‘endoreversible” limits (assuming a perfect chemical genera-
tor) are one step better then those derived from the classical ther-
modynamics. In the analysed chemical model, the endoreversible
step is just the step forward sufficient to incorporate the entropy
production caused by the transport phenomena. Further steps in-
clude imperfections within the chemical generator and the effect
of internal entropy production.

Finally, we point out that an economic problem of the system
optimization and the physical problem of work limits for a re-
source, considered here, are two different problems. The real work
delivered from a chemical power generator per unit time at eco-
nomically optimal conditions may sometimes be much lower than
the work limit associated with an appropriate consumption of fuel.
In the context of work limits, the trade-off between exploitation
and investment costs and the problem of investment reduction
by admission of energy losses are, in fact, irrelevant issues. Also,
the entropy production minimization for the chemical system con-
sidered has no relevance to the economic optimum of fuel
consumption.
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Appendix. Comparison of chemical and thermal operations of
power production

For comparison with Eqs. (91)–(93) we adduce below corre-
sponding relationships describing a dynamic thermal engine. As
in the main text, some formulae shall use non-dimensional time
s1 related to partial conductance g1, in place of more popular time
s related to the overall conductance g.

In a discrete thermal problem the performance index and con-
straints are

WN �
XN

k¼1

wk ¼ �c
XN

k¼1

1� T2

Tk
1 þ g1g�1uk

( )
ukhk ðA1Þ

Tk
1 � Tk�1

1 ¼ ukhk ðA2Þ
sk

1 � sk�1
1 ¼ hk ðA3Þ

where WN is the total power per unit mass flux and the bracketed
expression in Eq. (A1) is the first-law efficiency. The continuous lim-
it is an integral of power per unit mass flow

W ¼ �
Z sf

si
c 1� T2

T þ dT=ds


 �
dT
ds

� �
ds

¼ �
Z sf

si
c 1� T2

T þ g1g�1dT=ds1


 �
dT
ds1

� �
ds1 ðA4Þ

The associated integral of entropy production is

Sr ¼
Z sf

si
c
ðdT=dsÞ2

TðT þ dT=dsÞds ¼
Z tf

ti
c

vðdT=dtÞ2

TðT þ vðdT=dtÞÞdt ðA5Þ

The temperature derivative and slope coefficients are taken
here either with respect to the non-dimensional time s (identical
with the overall number of heat transfer units) or with the re-
source’s holdup time t. In a periodic process of energy upgrading
the latter variable represents the utilization time of a thermal re-
source. Both time variables are linked with length coordinate, x,
by an equation

s � a0avF
Gc

x ¼ a0av

qc
t ¼ t

v ðA6Þ

where a0 is an overall heat transfer coefficient, av is the specific area,
F is the cross-sectional area for fluid’s flow, and v = qc/(a0av) plays
the role of a time constant for the system [16]. An optimal (power
maximizing) relaxation process is described by a family of exponen-
tial curves [16,17]. However, in systems with nonlinear transport
(e.g. in radiation engines) the relaxation curves are no longer expo-
nential [18,19].

To apply thermal work (A1) as the additive component of iso-
thermal chemical work (91) in agreement with Eq. (12), one should
be aware of the use of approximate formulae Q10 ¼ g1ðT1 � T10 Þ and
Q20 ¼ g2ðT20 � T2Þ to describe thermal efficiency g in terms of the
total heat flux (11) and effective conductances g1, g2 and g. Since
the entropy balance of the chemical engine holds in the form
Q10=T10 ¼ Q 20=T10 , the approximate thermal efficiency g in terms
of Q10 is derived in the same way as in the case of pure heat transfer
[20]. This efficiency is contained in the large braces of the second
line of Eq. (A4).

Other models of dynamical chemical systems analyzed to date
are available in the literature [21].
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